Answer 1.
Find the vertical asymptotes by finding the values that make the expression undefined. Find the oblidue asymptote by long polynomial division.

\begin{align} (-\infty,0)\cup(0,\infty) \end{align}
\begin{align} {x|x\neq0} \end{align}

Vertical Asymptotes: $x=0$
No Horizontal Asymptote
Oblique Asymptotes: $y=x^2+3x-1$

Answer 2
Using the graph, find the vertical and horizontal asymptotes of the function.

Vertical: $x=1$
Horizontal: $y=1$

Find the Asymptotes of each function:

Answer 3

Vertical: $x=1$
Horizontal: No horizontal asymptote

Answer 4

Vertical: $x=\frac{-1}{2}\$
Horizontal: $y=1$

Find and graph each asymptote:

Answer 5

Vertical: $x=-7$
Horizontal: $y=1$
No oblique asymptotes
X-Intercept: $(-3\textrm{,}0)$
Y-Intercept: $(0\textrm{,}\frac{3}{7})$